Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Gardner timing recovery algorithm for improved loop structure
LI Wei, JIANG Hong, WU Chun, DENG Haowen
Journal of Computer Applications    2019, 39 (10): 3013-3017.   DOI: 10.11772/j.issn.1001-9081.2019040636
Abstract511)      PDF (744KB)(269)       Save
Aiming at the problems of long synchronization setup time and poor synchronization stability in classical Gardner timing recovery algorithms, a Gardner timing synchronization recovery algorithm with improved loop structure was proposed. Firstly, two interpolation filters with cubic interpolation and piece wise parabolic interpolation were used to obtain two optimal interpolation sequences. Secondly, the timing errors corresponding to the two interpolation sequences were calculated respectively and the weighted average value was obtained to gain the timing error of the loop. Finally, the weighted average value of two optimal interpolation sequences was used as the loop output. The simulation experiments of two modulated signals of Quadrature Phase Shift Keying (QPSK) and 16 Quadrature Amplitude Modulation (16QAM) were performed. Simulation results show that the synchronization stability of the proposed algorithm is better on QPSK signal. Compared with performing on 16QAM signal, the number of sequences corresponding to the position of the symbols when the loop starts the synchronization is obviously reduced. Additionally by using the propposed algorithm, the convergence radius of the QPSK constellation is about 0.26 when the SNR is -5 dB. Compared with the improved Gardner timing recovery algorithm similar to Frequency and Phase Lock Loop (FPLL), the convergence radius is reduced by 0.08. This algorithm effectively shortens the synchronization setup time, improves the stability of the loop, and can be widely applied in high-speed demodulation system.
Reference | Related Articles | Metrics